Scientists discover key genes behind insect migrations
Scientists have identified more than 1,500 genetic differences between migratory and non-migratory hoverflies.
A team led by the University of Exeter captured migrating insects as they flew through a mountain pass, and sequenced active genes to identify which determine migratory behavior.
This genetic information was then compared to that of non-migrating summer hoverflies.
“We identified 1,543 genes whose activity levels were different in the migrants,” said lead author Toby Doyle, of the Center for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.
“What really struck us though was the remarkable range of roles these genes play.
“Migration is energetically very demanding, so finding genes for metabolism was no surprise but we also identified genes with roles in muscle structure and function, hormonal regulation of physiology, immunity, stress resistance, flight and feeding behavior, sensory perception and for increasing longevity.”
Each autumn, billions of migratory hoverflies leave northern Europe and make a long-distance journey south.
Their journey takes them through the Pyrenees where they become concentrated through high mountain passes.